Service based identification of physiological system in desktop grid

Tomáš Kulhánek¹,², Jan Šílar¹, Jiří Kofránek¹, Marek Mateják¹, Pavol Privitzer¹, Martin Tribula¹

¹Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, CZ
tomaton@centrum.cz, ²CESNET z.s.p.o.

The acausal modeling represents the modeled reality as a set of mathematical equations in contrast to causal modeling techniques which describes rather the algorithm to compute results from input. The acausal modeling in Modelica[1] language gives an option to select which parameters are known and which are unknown and will be computed on the same model representation.

The goal of identification/validation is to determine model parameters so the model solution is as close as possible to the measured real data, this can be done by inversion or optimization methods. Identification algorithm is model independent. It’s possible to validate physiological models and identify physiological system by comparing the computed/estimated parameters of the models of human physiology with real measurement on a patient.

The introduced web service layer provides an access to capabilities of desktop grid system BOINC. However the integration of BOINC[2] needs to link project computation (on the server) and application computation (on the client) with BOINC API. Some simplifications give DC-API[3]. To avoid tight coupling and linking between project and BOINC, the web service layer was introduced on the server side. On client side an application wrapper approach is sufficient. The project computation communicates via HTTP and SOAP protocol remotely with BOINC and identification algorithms using numerical optimization or inversion methods is implemented in MATLAB together with .NET assembly which sends parameter estimation tasks to the web service via SOAP. A model dependency parameter estimation is currently compiled Modelica solver of Dymola tool. Other reliable tools are under development.

Acknowledgment: This work was supported by the grant of project ID 361, 2009/2 of research foundation CESNET z.s.p.o.

